

YOUR KEY to innovation and success

XUV Phase Retarder AURORA

ur XUV Phase Retarder acts as a quarter waveplate to turn linearly polarized XUV light into circularly polarized light without introducing noticeable dispersion. The phase retarder achieves closeto-circular polarization of $P_c=0.75$ and obtains > 25% transmission around 66 eV photon energy, where the Ni M_a/M_a edge locates [1].

A broad spectral range from 40 to 85 eV is supported to cover the M₂/M₃ edge of 3 transition metals - Fe, Co and Ni.

The retarder uses a transmission optimized, four mirror grazing incidence reflection geometry that induces a quarter wave phase offset between the s- and p-polarization components of a linearly polarized input XUV beam. At the Ni M₂/ M₃ transition up to 3% dichroism contrast is observed (i.e. > 85% of the theoretical value) [1].

A clear aperture of 3 mm will allow the low divergent XUV to pass through without clipping. Our XUV Phase Retarder is ideally geared to be combined ultrafast high-harwith monic XUV sources adding spin-sensitivity to conventional laser based pumpprobe experiments via attosecond magnetic circular dichroism detection.

- Create circularly polarized XUV light without adding dispersion (ideal for attosecond applications)
- Up to ≈ 40% max transmission (40-85 eV version)
- Up to ≈ 30% max transmission (10-40 eV version)
- Compact design, with minimum change in the delay line

- Broad spectral range covering 40 - 85 eV (high-energy version or 10 - 40 eV (low-energy version)
- Entrance and exit iris diaphragms for alignment
- Easy to implement in existing setups

Characteristics:

Spectral Range	10-40 eV	40-85 eV	
Avg Transmission	>25%	>25%	
Max Ellipticity Pc¹	1.0 @ 21 eV	0.85 @ 53eV (Fe) 0.75 @ 66 eV (Ni)	
Extra Beam Path	3 mm	3 mm	
Clear Aperture	3 mm	3 mm	
Footprint	51mm (W) x 118mm (L)	51mm (W) x 118mm (L)	

¹Degree of Ellipticity expressed as Stokes Parameters P_c=S3/S0

UltraFast Innovations GmbH Dieselstr. 5 85748 Garching Germany

phone: +49 89 36039 - 437 fax: +49 89 36039 - 453 info@ultrafast-innovations.com www.ultrafast-innovations.com

Transmission and Ellipticity low-energy version

Transmission and Ellipticity high-energy version

Element	Fe	Со		Ni	
Edge	M_2/M_3	M ₂	M ₃	M ₂	M ₃
Energy	52.7 eV	58.9 eV	59.9 eV	66.2 eV	68 eV
Transmission	9%	17%	18%	26%	30%

References:

[1] Siegrist, F., Gessner, J.A., Ossiander, M. et al. Light-wave dynamic control of magnetism. Nature **571**, 240-244(2019).