SAVANNA
Hollow-Core Fiber Compressor
Our standard hollow-core fiber (HCF) compressor SAVANNA shortens the duration of the input laser pulses. Based on compression after spectral broadening, the spectral bandwidth is first broadened through nonlinear interaction of high-energy femtosecond pulses with a noble gas inside a hollow-core fiber. The resulting supercontinuum pulses are then compressed using ultra-broadband chirped mirrors, resulting in pulses 5-6 times shorter than the original input.
SAVANNA combines high transmission and unique ultra-broadband compression.
For those interested in high-power laser compression, a stretched-flexible hollow-core fiber, or higher compression factors, we recommend you having a look at SAVANNA-HP.
Key Product Features
- Input Pulse Duration: up to 60 fs (as short as possible)
- Input pulse energy: 0.5 - 2 mJ (optimum: 1 - 1.5 mJ)
- Repetition rate: 1 - 10 kHz
- Typical compression factor: 5 - 6 x
- Fiber transmission: up to 70%
- White light spectral bandwidth:
- 270 - 1000 nm (achievable with optimal input)
- 400 - 900 nm (with commercial 25 fs laser)
- Broadband source for spectroscopy applications
- Footprint: 300 x 60 cm2
References
[1] Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression
X. Ma, J. Dostál, T. Brixner
Optics Express 24, 268867 (2016)
[2] Synthesized Light Transients
A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis
Science 334, 195 (2011)
[3] Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua
A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakolev, M. Uiberacker
New Journal of Physics 9, 242 (2007)
[4] Powerful 170-atoosecond XUV pulses generated with few-cycle pulses and broadband multilayer optics
M. Schultze, E. Goulielmakis, M. Uiberacker, M. Hofstetter, J. Kim, F. Krausz, U. Kleineberg
New Journal of Physics 9, 243 (2007)